পোস্টগুলি

2015 থেকে পোস্টগুলি দেখানো হচ্ছে

ত্রিভুজ

ছবি
ত্রিভুজ হল সমতলের উপর অঙ্কিত একটি চিত্র যা তিনটী সরলরেখা দ্বারা সীমাবদ্ধ। যদি ত্রিভুজের তিনটি বাহুই অসম হয়, তবে একে বিষমবাহু ত্রিভুজ বলে। আর কেবল দুই বাহু সমান হলে তাকে সমদ্বিবাহু ত্রিভুজ এবং তিনটি বাহুই সমান হলে তাকে সমবাহু ত্রিভুজ বলা হয়। সমদ্বিবাহু ত্রিভুজে সমান বাহুদ্বয়ের বিপরীত কোণগুলি সমান। আর সমবাহু ত্রিভুজের সবগুলি কোণ সমান। যে ত্রিভুজের একটি কোন সমকোণ তাকে সমকোণী ত্রিভুজ বলে। সমকোণী ত্রিভুজের সমকোণের বিপরীত বাহুর নাম অতিভুজ। পিথাগোরাসের বিখ্যাত উপপাদ্য অনুযায়ী সমকোণী ত্রিভুজের অতিভুজের বর্গ এর সমকোণ-সংলগ্ন দুই বাহুর বর্গের যোগফলের সমান। অর্থাৎ  ত্রিভুজের ভিতরের কোনগুলিকে অন্তঃস্থ কোণ বলে, আর ত্রিভুজের বাহুগুলিকে বাড়িয়ে দিয়ে যে কোণগুলি পাওয়া যায়, তাদেরকে হলে বহিঃস্থ কোণ। ত্রিভুজের তিনটি অন্তঃস্থ কোণের সমষ্টি ১৮০°। এছাড়াও, যেকোন বহিঃস্থ এর অন্তঃস্থ বিপরীত কোণদ্বয়ের সমষ্টির সমান। ত্রিভুজের কোন শীর্ষবিন্দু থেকে বিপরীত বাহুর মধ্যবিন্দু পর্যন্ত আঁকা রেখাকে বলা হয় ত্রিভুজটির একটি মধ্যমা। ত্রিভুজের তিনটি মধ্যমা একই বিন্দুতে ছেদ করে এবং এটি প্রতিটি মধ্যমার শীর্ষ...

জ্যামিতি (Geometry)

ছবি
জ্যামিতি  ( ইংরেজি :  Geometry )  গণিতের  একটি শাখা যেখানে আকার ও আকৃতি এবং এতদসম্পর্কিত বিভিন্ন আঙ্গিকের পারস্পরিক সম্পর্ক নিয়ে গবেষণা করা হয়। জ্যামিতিকে স্থান বা জগতের (space) বিজ্ঞান হিসেবে গণ্য করা যায়।  পাটীগণিতে  যেমন গণনা সংক্রান্ত আমাদের বিভিন্ন অভিজ্ঞতা নিয়ে আলোচনা করা হয়, তেমনি জ্যামিতিতে স্থান বা জগৎ নিয়ে আমাদের অভিজ্ঞতার বর্ণনা ও ব্যাখ্যা দেয়া হয়। প্রাথমিক জ্যামিতিকে কাজে লাগিয়ে দ্বি-মাত্রিক বিভিন্ন আকারের  ক্ষেত্রফল  ও  পরিসীমা  এবং ত্রিমাত্রিক বস্তুসমূহের পৃষ্ঠতলের ক্ষেত্রফল ও  আয়তন  নির্ণয় রা সম্ভব । অসংজ্ঞায়িত পদসমূহ জ্যামিতির কিছু কেন্দ্রীয় ধারণার কোন সরল সংজ্ঞা নেই। এই অসংজ্ঞায়িত ধারণাগুলির মধ্যে সবচেয়ে পরিচিত হল  বিন্দু ,  রেখা  ও  তলের  ধারণা। এই মৌলিক ধারণাগুলি আমাদের প্রাত্যহিক জীবনের অভিজ্ঞতা থেকে উদ্ভূত। একটি বস্তু কোথায়? - এই প্রশ্নের উত্তরে আমাদেরকে একটি নির্দিষ্ট, স্থির অবস্থানের কথা চিন্তা করতে হয়। "বিন্দু" পদটি দিয়ে আমাদের এই স্বজ্ঞাভিত্তিক (intuitiv...

ফাংশন (গণিত)

ফাংশন  ( ইংরেজি ভাষা : Function) একটি  গাণিতিক  ধারণা যা দুইটি রাশির মধ্যে পারস্পরিক নির্ভরশীলতা প্রকাশ করে। একটি রাশিকে বলা হয় প্রদত্ত রাশি, বা  স্বাধীন চলক  বা ফাংশনটির আর্গুমেন্ট বা ইনপুট। অপরটিকে উৎপাদিত রাশি বা ফাংশনের মান বা আউটপুট বলা হয়। ফাংশন কোন একটি নির্দিষ্ট সেট থেকে (যেমন- বাস্তব সংখ্যার  সেট থেকে) নেয়া প্রতিটি ইনপুট উপাদানের জন্য একটি অনন্য আউটপুটকে সম্পর্কিত করে। কোন ফাংশনকে বিভিন্ন উপায়ে প্রকাশ করা যায়:  সূত্রের  সাহায্যে,  লেখচিত্রের  সাহায্যে, ফাংশনটি গণনাকারী  অ্যালগোরিদমের  সাহায্যে, কিংবা ফাংশনটির বৈশিষ্ট্য বর্ণনা করে। কখনও কখনো একটি ফাংশনকে অন্য এক বা একাধিক ফাংশনের সাথে এর সম্পর্কের মাধ্যমে প্রকাশ করা হয় (যেমন-  বিপরীত ফাংশন )। বিভিন্ন ব্যবহারিক শাস্ত্রে ফাংশনগুলিকে প্রায়শই তাদের মানের সারণি কিংবা সূত্রের মাধ্যমে প্রকাশ করা হয়। তবে সব ফাংশনকে উপরের সব রকমভাবে প্রকাশ করা যায় না। আসল  ফাংশন  ও একে কীভাবে উপস্থাপন করা হয়েছে বা কল্পনা করা হয়েছে , এ দুইয়ের মধ্যে যথেষ্ট পার্থক্য আ...

সেট

কোন সেট গঠন করতে হলে অবশ্যম্ভাবী যে শর্ত পূরণ করতে হয় তা হলো যে কোন বস্তু সেটটির সদস্য কি না তা কোন দ্ব্যর্থতা ছাড়া নিরূপণ করা যাবে। আধুনিক হাতিয়ার হিসেবে সেট এর ব্যবহার ব্যাপক।জার্মান গণিতবিদ জর্জ ক্যান্টন (১৮৪৫-১৯১৮) সেট সর্ম্পকে প্রথম ধারণা ব্যাখ্যা করেন।তিনি অসীম সেটের ধারণা প্রদান করেন সেট বীজগণিত সেটের উপাদানগুলোকে সাধারণত কমা দ্বারা আলাদা করা হয়। সেট প্রকাশের জন্য ইংরেজি বড় হাতের অক্ষর ব্যবহার করা হয়। আরেকটি গুরুত্বপূর্ণ ব্যাপার হল সেট প্রকাশের জন্য সবসময় দ্বিতীয় বন্ধনী ব্যবহার করা। যেমন: A={a,b,c} এখানে A হল সেট। a,b,c হল সেটের উপাদান। সেটের সংজ্ঞা বিশ্লেষণ করলে দেখা যায়, সেট হবার জন্য দুটো শর্ত পালন করতে হয়। শর্ত দুটি হচ্ছে-সুনির্দিষ্টতা ও সুসংজ্ঞায়িত হওয়া। আমরা এখন দুটো শর্ত বিস্তারিত আলোচনা করব। প্রথমে সেট হবার জন্য উপাদানগুলো সুনির্দিষ্ট হতে হবে। অর্থাৎ উপাদানগুলোর মাঝে কোন না কোন মিল থাকতে হবে। উপরের উদাহরণে a,b,c সবাই ইংরেজি বর্ণমালার অক্ষর। দ্বিতীয় শর্তটি অধিকতর গুরুত্বপূর্ণ-সুসংজ্ঞায়িত হওয়া। সেটের সংজ্ঞায় এমন কোন বর্ণনা ব্যবহার করা যাবে না যা নিয়...

নবম শ্রেনী: জ্যামিতি

ছবি
>বিন্দু শুন্য মাএিক বা মাএা হীন কারন এর দৈঘ্য প্রস্হ ও উচ্চতা নেই। >রেখা এক মাত্রিক কারন এর দৈঘ্য আছে কিন্তু প্রস্হ ও উচ্চতা নেই।

বীজ গণিতের প্রয়োজনীয় সূএাবলী:

ছবি
বীজ গণিতের প্রয়োজনীয় সূএাবলী:

১।বাংলাদেশ স্বাধীন হওয়ার পর থেকে প্রচলিত সব মুদ্রা

ছবি

২।প্রস্তাবিত পে কমিশন ২০১৫

ছবি